
22

International Journal of Recent Research and Review, Vol. V, March 2013
ISSN 2277 – 8322

A component-centric UML based approach for modeling the
architecture of web applications.

Mukesh Kataria1

1Affiliated to Rajasthan Technical University,
Research Scholar (M. Tech.), Computer

Science Department, Poornima College of
Engineering, Jaipur, Rajasthan, INDIA,

mukeshkataria31@gmail.com

Raj Yadav2
2Software Engineer, Computer Science Department,
Kautilya Institute of Technology and Engineering,

Jaipur, Rajasthan, INDIA,
yadavrajc@gmail.com

Ajay Khunteta3

3Associate Professor, Computer Science Department,
Poornima College of Engineering, Jaipur, Rajasthan, INDIA,

ajay_khunteta@rediffmail.com

Abstract- Web applications use components developed

in various technologies through an abstraction space

richer than that of the object oriented paradigm. The

architecture of web applications can be represented by

showing specific web components, their compositions,

navigations and inter-component relationships. In this

paper, we propose a component-centric UML based

approach for modeling the architecture of web

applications. Our approach is based on a classification

of components and inter-component relationships that

typically occur in web applications. We use UML

extension mechanisms to represent specific web

components and their relationships.

We categorize the web application components and

their inter-component relationships. Based on that cate-

gorization, a stereotype suite for UML is developed. We

analyze various web technologies including HTML,

ASP, JSP, PHP, Servlet and JavaBean to develop the

consolidate stereotypes.

Keywords- UML, ADL, HTML, ASP, JSP, PHP, ACME,

OMG.

1. INTRODUCTION
A typical web application uses components developed in

various technologies through an abstraction space richer

than that of the object oriented paradigm. Web applications

have concepts like session and cookies, which are specific

to the domain of web applications. The aim of this project is

to develop a UML based modeling language for describing

the architecture of web applications. This language should

be able to specify, design and document the functionality

and behavior of a web application that could be developed

using any of the available web technologies. Our work

includes the use of UML extension mechanisms to describe

web specific components and their relationships with other

web components and traditional middle-tier elements. Our

final goal is to design various diagrams for modeling static

and dynamic behavior of the web applications precisely.

As the size and complexity of software system increase, the

design and specification of overall system become more

significant issue to develop and maintain them. We have

various Architecture Description Language (ADL)

including Adage, Aesop, Darwin, Wright and ACME, to

formally specify the architecture of software systems. But

as observed in, ADLs have not come into extensive use in

23

industries, because we have to learn a distinct notation

which is specific to architecture, and ADLs do not address

all stages of development process. On the other hand, UML

is a standard modeling language for visualizing, specifying,

constructing and documenting the architecture of software

systems. UML diagrams are graphical representation of

system elements i.e. class, object, component etc and their

inter-relations including association, aggregation and

inheritance. In forward engineering, UML helps us in

developing a new system from problem statements and

provide efficient communication among stakeholders

including developers, architects, project managers,

maintainers and testers. In reverse engineering, it helps in

precisely representing inter-relationships between system

elements, which is very important to maintain and update

already build systems.

2. WEB APPLICATIONS AND WEB

COMPONENTS
A web application is a distributed application that is

developed using various web technologies and whose

functionality is accessed via web over a network such as the

Internet or an intranet. We can update and maintain them

without distributing and installing software on potentially

thousands of client computers. Due to this ability web

applications are very popular than the desktop applications.

Web applications are not limited to one typo of application.

They can range from simple static web pages to

sophisticated applications. Different categories of web

applications are grouped together according to their data

and control complexity.

• Brochure Web Applications: This is the first generation

of web applications. They are composed of static web pages

and tend not to have much programming logic in them.

When developing them the focus is on content development

and the layout of graphics and text. Examples include

personal web pages which contains their resume and

personal information, or web pages about company

products.

• Service Oriented Applications: These applications offer

a service to web users and contain the programming logic

needed to implement the service. The layout of the data is

often a secondary concern. Examples include web mail

services and online word-processing systems.

• Data Intensive Applications: These applications

provide an interface to browse and query large amount of

data. The main emphasis in these applications is on the

data, with minimal amount of programming logic involved.

An example of this application type is online library

catalogs.

• Information System Applications: These applications

combine the service oriented applications and the data

intensive applications. Developers of information system

applications are concerned with the data flow for browsing

and retrieving data, and control flow for the different phases

involved in the manipulation of the data. Electronically

book stores or online banking are example of this

application type.

Fig. 1. Typical Architecture of a Web Application

24

3. UML PROFILE FOR WEB APPLICATIONS

UML is a standard and industry accepted graphical

modeling language to model the software systems.

However, since it is a general purpose modeling language,

it lacks elements to model and represent concrete concepts

of specific domains. This lack of expressiveness also exists

for the domain of web applications. As a solution, OMG

(Object Management Group) has created a mechanism for

extending the syntax and semantic of UML to express more

specific concepts of certain application domains. In this

chapter, we first briefly explain the UML extension

mechanisms used for creating UML profiles. Then we

explain the construction of UML profile for web application

domain.

UML extensibility mechanisms permit us to extend the

language in controlled ways. The controlled ways means

the changes are easily understandable by the UML users.

These mechanisms include stereotypes, tagged values, and

constraints. We extend the UML by adding new model

elements, creating new properties, and specifying new

semantics. Stereotypes: The stereotypes extend the

vocabulary of the UML, allowing us to create new kinds of

model elements that are derived from existing modeling

elements but are specific to our domain i.e. web

applications. We represent a stereotype by placing the name

of stereotype between << >> and above the name of an

existing UML element. For example, when modeling a web

application, we might want to represent client presentation

component. We can use stereotypes << ClientPresentation

>> by extending the UML standard model element i.e.

component. As an option, the stereotyped element may be

rendered by using a new icon associated with that

stereotype.

4. CONSTRUCTION OF THE PROPOSED UML

PROFILE

For the creation of UML profile, we use the aforementioned

UML extension mechanisms. We follow the given below

procedure to develop the UML profile for web applications.

4.1 Building the Meta-Model for Web Applications

A web application has many web elements including client

static page, form, client dynamic page, presentation

component, service component, hyperlink and link. These

all elements represent an abstraction drawn from the web

application development. The definition of these elements

defines the meta model for the web application domain.

Fig. 2. A Metamodel for Web Application Domain

4.2 Define Stereotype for Web Elements

In this step, we define a stereotype for each metamodel

element (web Page, form) that we find in the previous step

and want to include in the profile. We select some element

and create the corresponding stereotype for each one of

them.

25

Fig. 3 Stereotypes for the Metamodel Elements

4.3 Extension of UML Modeling Elements

We identify the UML elements that will be extended with

each stereotype. We identify various UML elements

including class, component, package, association for

creating UML profiles. We create various stereotypes by

extending UML modeling element component, for

representing client component precisely. The <<

ClientDynamic >> stereotype specify a client component

that generates an interactive web page. It may uses or

invoke other client components.

The << ClientDynamic >> stereotype specify a client

component that generates an interactive web page. It may

uses or invoke other client components. We define the

various stereotypes including stylesheet, client script and

multimedia by extending the UML standard extension ele-

ment << file >>. We define <<StyleSheet >> stereotype to

represent a presentation control component and << Applet

>> stereotypes to specify an executable component that

may runs independently or invoke by other components to

provide dynamic behavior at client side.

 Fig. 4 UML Stereotypes for Client Components

Web application has various server components that are either

process the user request or provide service to other components.

They are managed by web container and are run on web server.

Figure 4.6 shows stereotypes for representing the server

components. The stereotype << ServerComponent >> specifies

a component that is executed by web server, when it receives

the request from client or other server component. We create a

<< Server Presentation >> stereotype to specify a server

presentation component.

 Fig. 5 UML Stereotypes for Server Components

26

The << ActionLink >> stereotype represents a association

relationship that specify the source component request is

processed by target component. The << ResponseLink >>

stereotype specifies the source component generate the

target as response to the user request. To specify the include

directive that is used to physically include the contents of

target into source file, we create a << ServerInclude >>

stereotype by extending an association element. The <<

Jsplnclude >> stereotype specifies the inclusion of either a

static or dynamic resource in a JSP page. If the resource is

static, its content is included in the calling JSP page. If the

resource is dynamic then it sends a request to another page

and includes the response in the response from the calling

page.

Fig. 6. UML Stereotypes for Server Component Relations

5. CONCEPTUAL COMPONENT DIAGRAM

A conceptual component is referred to as the program

module that follows some specific specification and has

interaction with other components. A conceptual

component represents the component properties, interfaces

and events that is used for interaction with other

components. Properties are not like traditional member

variables of a class, instead these are high level attributes of

a component that can be accessed by other web

components. Interfaces are the subset of accessible

operations which represent the interaction points of a

component.

Fig. 7. A Conceptual Component Diagram

It shows presentation component invokes an applet to

provide dynamic behavior at client side and uses a style

sheet to control the layout of generated web page. For the

user data validation at client side, presentation component

also uses a client script component.

6. CONCLUSION

In this paper, we proposed a component-centric UML based

approach to model the architecture of web applications. We

found many reasons to use and extend the UML for

modeling web applications. We analyzed various web

technologies including HTML, ASP, JSP, PHP, Servlet and

JavaBean to develop a consolidate UML profile for web

applications. Using this profile, one can represent the

architecture of web applications which are developed by

27

use of available technologies. The paper also explored

various kinds of diagrams through which typical web

application component architecture can be represented. It

was found that many existing diagrams can be used by

applying proposed UML profiles to them.

7. REFERENCES

[1] Ahmed and Richard, Architecture recovery of web

applications, Proceedings of International Conference on

Software Engineering (2002).

[2] Paolini Baresi, Garzotto, Extending UML for modeling

web applications, Proceedings of the 34th Annual Hawaii

International Conference on System Sciences(HICSS-34)-

(2008).

[3] Longo Bochicchio, Conceptual modeling of data

intensive and information intensive web applications,

Proceedings 10th International Multimedia Modelling

Conference (2007)

[4] Jacobson, Rumbaugh, The unified modeling language

user guide, Addision-Wesley, 2006.

[5] Matera Ceri, Fraternali, Conceptual modeling of data-

intensive web applications, IEEE Internet Computing,

vol.06 (2008), 20-30

[6] Jun Zhou Chang-ai Sun, Rearchjbs: a tool for automated

software architecture recovery of javabeans-based

applications, Proceedings of the Software Engineering

Conference (2005), 270- 280.

[7] Kazman Clements, Bass, Software architecture in

practice, Addision-Wesley (2004).

[8] Jim Conallen, Modeling web application architectures

with uml, Communications of the ACM 42 (1999), no. 10,

63-70.

[9] Mandel Hennicker, Koch, Extending uml to model

navigation and presentation in web applications, Workshop

on Modelling Web Applications in UML (2000).

[10] Ping Chen Jing, Jian Chen, Modeling web application

architecture with uml, Proceedings of the 36th International

Conference on Technology of Object-Oriented Languages

and Systems pp.265-274 (2006).

[11] Nora Koch and Andreas Kraus, Towards a common

metamodel for the development of web applications,

Proceedings 3rd International Conference on Web

Engineering (ICWE 2003) (2003), 497-506.

[12] N.Koch R.Hennicker, Modeling the user interface of

web applications with UML, Workshop on Practical UML-

Based Rigorous Development Methods (2006), 158-172.

[13] Joen Roh, Kim, Architecture modeling language based

on UML 2.0, Proceedings of the 11th Asia-Paci_c Software

Engineering Conference (APSEC04) (2008).

