
4

International Journal of Recent Research and Review, Vol. VI, June 2013
ISSN 2277 – 8322

Comparative Study of Agile Methods and Their Comparison
with Heavyweight Methods in Indian Organizations

Uma Kumari1, Abhay Upadhyaya2

1Ph.D Scholar, Department of Computer Science, Jagannath University, Jaipur, India
2Professor, University of Rajasthan, Jaipur, India
Email: umasecd@gmail.com, abhayu@rediffmail.com

Abstract : “Agile” means nimble or quick moving and
“Agility” means the ability to think and draw conclusions
quickly. In terms of software development agility means
dynamic, content specific, growth oriented and able to
adopt the changes quickly and easily. The roots of agile go
back more than a decade but it is on the boom from the
last two decades. It was February 2001, when a group of
people kept a meeting in Utah, in order to find an
alternative method to the existing heavy software
development methodologies and the result was agile
methodology. Although there are 13 agile methods and
exact number of Agile method is still a debate question. I
have included only 5 methods, Scrum, XP, DSDM, FDD,
Lean Software

Keywords : Agile, Scrum, Extreme Programming,
Dynamic Systems Development Method, Feature-Driven
Development Method, Lean Software

I. INTRODUCTION

Traditional software development methods are not
always feasible in rapidly changing business
environment. This paper demonstrates the difference
between heavyweight and agile software development.
Agile Manifesto is collection of values and principles,
which are found in most agile methods. Agile alliance
formulated their ideas into values and further to twelve
principles [1] that support those values which are as
follows:

i. Highest priority is to satisfy the customer
through early and continuous delivery of
valuable software.

ii. Welcome changing requirements, even late in
development. Agile processes harness change
for the customer’s competitive advantage.

iii. Deliver working software frequently from a
couple of weeks to a couple of months, with a
preference to shorter timescale.

iv. Business people and developers must work
together daily throughout the project.

v. Build projects around motivated individuals.
Give them the environment and support they
need and trust them to get the job done.

vi. The most efficient and effective method to
conveying information to and fro within a
development team is face to face conversation.

vii. Working software is the primary measure of
progress.

viii. Agile processes promote sustainable
development. The sponsors, developers and
users should be able to maintain constant pace
indefinitely.

ix. Continuous attention to technical excellence
and good design enhances agility.

x. Simplicity- the art of maximizing the amount of
work not done- is essential.

xi. The best architectures, requirements and
designs emerge from self organizing teams.

5

xii. At regular intervals the team reflects on how to
become more effective, then tunes and adjusts
its behavior accordingly.

Values of Agile Manifesto are given below:

i. Individuals and interactions over processes and
tools.

ii. Working software over comprehensive
documentation.

iii. Customer collaboration over contract
negotiation.

iv. Responding to change over following a plan.

II. CHARACTERISTICS OF AGILE

Agile consists of following characteristics:
i. Modularity

ii. Incremental development
iii. Team composition
iv. People oriented
v. Cooperative

vi. Collaborative and communicating working style
vii. Maintaining the Integrity of the Specifications

viii. Lightness

III. SCRUM

Scrum is huddled mass of players engaged with each
other to get a job done. Scrum for software development
came out of rapid prototyping community because they
wanted a methodology that would support an
environment in which the requirements were not only
incomplete at the start, but also could change rapidly
during development. Scrum introduces the ideas of
flexibility, adaptability and productivity. Scrum
concentrates on how the team members should function
together in order to produce the system flexibility in
constantly changing environment. The main idea of
Scrum is that system development involves several
environment and technical values (e.g. requirements,
time frame, resources and technology) that are likely to
change during the process. This made the development
process unpredictable and complex, requiring flexibility
of the system development process for it to be able to

respond to the changes. Scrum phases are introduced
according to Schwaber [2].

A. Pre-game phase

This phase includes two sub-phases: planning and
architecture/high level design.
Planning includes the definition of the system being
developed. A product backlog is created containing all
the requirements that are currently known. The
requirements can originate from the customer, sales and
marketing division, customer support or software
developers. The requirements are prioritized and effort
needed for their implementation is estimated. The
product Backlog list is constantly updated with new and
more detailed items, as well as with more accurate
estimations and priority orders.

In the architecture phase, the high level design
of the system including the architecture is planned based
on the current items in the product Backlog. In case of
enhancement to existing system, the changes needed for
implementing the Backlog items are identified along
with the problem they may cause. A design meeting is
held to go over the proposals for the implementations
and decisions are made on the basis of this review.

B. The development phase

This phase is called game phase is the agile part of
scrum approach. This phase is treated as “black box”
where unpredictable is expected. The different
environment and technical variables (such as time
frame, quality, requirements, resources, implementation
technologies and tools and even development methods)
identified in Scrum, which may change during the
process are observed and controlled through various
Scrum practices during the Sprints, of development
phase. In the development phase, the system is
developed in Sprints. Sprints are interactive cycles
where the functionality is developed or enhanced to
produce new increments. Each Sprint includes the
traditional phases of system development. One Sprint is
planned to last from one week to one month. There may

6

be 3 to 8 Sprints in one system. Also there can be more
than one team building the increment.

C. The post game phase

This phase contains the closure of the release. This
phase is entered when an agreement has been made that
the environmental variables such as the requirements
are completed. In this case, no more items and issues
can be found nor can any new ones be invented. The
system is now ready for release and preparation for this
is done during post-game phase, including the tasks
such as integration, system testing and documentation.

IV. EXTREME PROGRAMMING (XP)

Extreme Programming has evolved from the problems
caused by the development cycles in traditional
development models [3]. It first started as an
opportunity to get job done with practices that had been
found effective in software development processes.
After a number of successful trials, XP methodology
was developed on the key principles and practices used.
The term ‘extreme’ comes from taking these
commonsense principles and practices to extreme
levels. The life cycle of XP consists of 5 phases:

A. Exploration phase

In this phase the customers write out the story cards
that they wish to be included in first release. Each story
card describes a feature to be included into the program.
At the same time the project team familiarize
themselves with the tools, technology and practices they
will be using in the project. The technology to be used
will be tested and architecture possibilities for the
system are explored by building a prototype of the
system. The exploration phase takes time between
weeks to a few months, depending largely on how
familiar the technology is to programmers.

B. Planning phase

This phase sets the priority order for the stories and
agreement of the contents of the first small release.
Programmers estimate the effort required by each story

and schedule is then agreed upon. The time span of
schedule of the first release doesn’t take more than two
months. Planning phase itself takes about few days.

C. Iteration to release

This phase includes several iterations of the system
before the first release. The schedule set in the planning
stage is broken down to a number of iterations that will
each take one to four weeks to implement. The first
iteration creates a system with the architecture of the
whole system. This is achieved by selecting the stories
that will enforce building the structure for the whole
system. The customer decides the stories to be selected
for each iteration. The functional tests created by the
customer are run at the end of each iteration. At the end
of last iteration the system is ready for production.

D. The productionizing phase

This phase requires extra testing and checking of the
performance of the system before the system can be
released to the customer. At this phase, new changes
may still be found and the decision has to be made if
they are included in the current release. During this
phase, the iterations may need to be quickened from 3
weeks to 1 week. The postponed ideas and suggestions
are documented for later implementations during
maintenance phase.

E. Maintenance phase

After the first release is produced for customer use, the
XP project must both keep the system in the production
running while also producing new iterations. In order to
do this, this phase has been introduced. Maintenance
phase may require incorporating new people into the
team and changing the team structure.

F. The death phase

This phase is near when the customer has no longer any
stories to be implemented. This requires that the system
satisfies customer needs in other respects. This is the
time in XP process when necessary documentation of
the system is finally written as no more changes to the
architecture, design or code are made. Death may also

7

occur if the system is not delivering the desired
outcomes, or if it becomes too expensive for further
development.

V. DYNAMIC SYSTEMS DEVELOPMENT METHOD

(DSDM)

DSDM is widely used in U.K. DSDM is a non-profit
and non proprietary framework for RAD development,
maintained by DSDM consortium [4]. DSDM provides
a framework of controls for RAD, supplemented with
guidance on how to efficiently use these controls. The
fundamental idea behind DSDM is that instead of fixing
the amount of functionality in a product, and then
adjusting time and resources to reach that functionality,
it is preferred to fix time and resources and then adjust
the amount of functionality accordingly.

DSDM consists of 5 phases: Feasibility study,
business study, functional model iteration, design and
build iteration and implementation. The first two phases
are sequential and done only once. In the last three
phases, the actual developments are done which are
iterative and incremental. DSDM approaches iterations
as timeboxes. A timebox lasts for a predefined period of
time, and the iteration has to end within the timebox.

A. Feasibility study phase

It is where the suitability of DSDM for a given project
is assessed. Judging by the type of project and most of
all, organizational and people issues, the decision is
made, whether to use DSDM or not. Two work products
are prepared- a feasibility report and an outline plan for
development. Optionally, a fast prototype can also be
made if the business or technologies are not known well
enough to be able to decide whether to proceed to the
next phase or not. The feasibility study phase is not
expected to take more than a few weeks.

B. Business study

It is the phase where essential characteristics of the
business and technology are analyzed. The
recommended approach is to organize workshops,

where a sufficient number of customer’s experts are
gathered to be able to consider all relevant facets of the
system to be able to agree on the development priorities.

C. Functional model iteration phase

It is the first iterative and incremental phase. In each
iteration the contents and approach for itertations are
planned [5]. The iteration goes through and results are
analyzed for further iterations. Both analysis and coding
are done, prototypes are build and experiences gained
from them are used in improving the analysis models.
The prototypes are not to be entirely discarded. A
functional model is produced as an output containing
the prototype code and analysis models. Testing is also
continuing and essential part of this phase. There are
four outputs in the phase. Prioritized function is the
prioritized list of the function that is delivered at the
need of the iteration. Functional prototyping review
documents collect the user comments about the current
increment, working as input for subsequent iterations.
Non functional requirements are listed, mainly to be
dealt within the next phase. Risk analysis of further
development is important document in the function
model iteration phase because from next phase onwards,
encountered problem will be more difficult to address.

D. Design and built iteration

This is where the system is mainly built. The output is a
tested system that fulfils at least the minimum agreed
set of requirements. Further development is based on
user’s comment. The final implementation phase is
where the system is transferred from development
environment into actual production environment.
Trainings are given to users and the system is handled
over to them.

VI. FEATURE-DRIVEN DEVELOPMENT (FDD)

It does not cover the entire software development
process, but focus on the design and building phase.
FDD consists of 5 sequential processes.

8

A. Develop an overall model phase

In the beginning of this phase domain experts are
already aware of the scope, context and requirements of
the system to be built. Documented requirements such
as use cases or functional specifications are likely to
exist at this phase. After each walkthrough, a
development team works in small group in order to
produce object models for the domain area at hand. The
development team then discusses and decides upon the
appropriate object model for each domain areas.

B. Build a feature list phase

Walkthrough object models and existing requirement
documentation give a good basis for building a
comprehensive features list for the system being
developed.

C. Plan by feature phase

It includes creation of a high-level plan, in which the
feature sets are sequenced according to their priority and
dependencies and assigned to chief programmers.
Further, the classes identified in the process are
assigned to individual developers, i.e. class owners.

D. Design by feature and build by feature phase

In this a small group of features are selected from the
feature sets, and feature teams needed for developing
the selected features are formed by the class owners.
The design by feature and build by feature processes are
iterative producers, during which the selected features
are produced. One iteration should take few days to a
maximum of two weeks.

VII. LEAN SOFTWARE

Lean Software Development helps software
organizations to optimize their processes and production
methods in order to deliver their products to the market
much faster and with better quality. Lean puts main
focus on people and communication. People who
produce the software are respected and they
communicate efficiently. It is more likely that they will

deliver good product and the final customer will be
satisfied [6].

Lean Software Development subsequently gave birth
to agile software Development methods and its main
branches are Scrum and Crystal Clear. Lean Software
Development is not a management or development
methodology, but it offers principles that are applicable
in any environment to improve software development.

Lean software development follows seven principles
which are

i. Eliminate Waste
ii. Amplify learning

iii. Decide as late as possible
iv. Defer Commitment
v. Deliver as fast as possible

vi. Empower the team
vii. Build integrity

VIII. FEATURES AND DRAWBACKS OF
DIFFERENT AGILE METHODS

Features and drawback of Scrum, XP, DSDM, FDD and
Lean Software are as per given in the Table I.

IX. DIFFERENCE BETWEEN AGILE AND

HEAVYWEIGHT METHODS

Every method has its weakness and strengths, so
depending upon need methodology is decided. Major
factors that effect this selection can be categorized as
per table II.

X. REFERENCES

[1] Agile manifesto website online available at

www.agilemanifesto.org

[2] Schwaber Ken., & Beedle Mike,”Agile software

development with Scrum”,Upper Saddle River, New

Jersey, Prentice Hall, pp. 142.

[3] Elssamadisy, A.(2001), XP on a large scale project-a

developer’s view, In M. Marchesi,G. Succi, D.Wells &

Williams(Eds),” Exreme Programming prespectives”,

Addison –Wesley, pp.123.

9

[4] Dynamic Systems Development Method (2nd ed.),

Ashford Tesseract , DSDM_Consortium (1995), pp.

239.

[5] V. R. Basili and A. J. Turner, "Iterative Enhancement:

A Practical Technique for Software Development,"

IEEE Transactions on Software Engineering, vol. 1,

no. 4, pp. 266 - 270,1975.

[6] M. Poppendieck and T. Poppendieck, Lean Software

Development Boston: Addison Welsey, 2003, pp. 203

[7] Glass, R. L. , “Agile Versus Traditional: Make Love,

Not War!,”, Cutter IT Journal 14(12): pp. 12–

18, 2001.

[8] Adaptive Software Development: A Collaborative

Approach to Managing Complex Systems, Highsmith,

J.A., 2000 New York: Dorset House, ISBN 0-932633-

40-4, pp. 392.

10

TABLE I

Agile methods features and drawbacks

S. No Method
Name

Features Drawbacks

1. Scrum Independent, self-
organizing and small
development teams,30
ay release cycle

Integration and
acceptance tests are
not detailed

2. XP Customer driven
development, small
teams, daily builds

While individual
practices are suitable
for many situations,
overall view and
management
practices are less
attractive

3. DSDM Application of
controls to RAD, use
of timeboxing and
empowered DSDM
teams. First truly
Agile software
development method,
use of prototyping

While the method is
available only
consortium members
have access to white
papers dealing with
actual use of the
method.

4. FDD 5 step process, object
oriented component
based development,
method simplicity,
design and implement
the system by features,
object modeling

It focuses only on
design and
implementation, it
needs other
supporting
approaches as well

5. Lean
software

Focuses on people and
communication,
follow 7 principals,
elimination of waste
reduces project time
and cost.

Decisions have to
made promptly

11

TABLE II
Comparison of Agile methods with heavyweight methods

S. No Criteria Agile Methods Heavyweight Methods

1. Approach Adaptive [7] Predictive

2. Aim To deliver software
quickly [8]

Software is delivered at a
defined speed

3. Benefits (a) Can work when
requirements
constantly changes
(b) At the end of each
stage it can adopt new
ideas
(c) Agile team has
launchable product at
the end of each tested
stage
(d) Allow specification
changes as per user’s
requirement

(a) With frequent
requirement changes it
cannot work
(b)Cannot adopt new ideas
in-between stages
(c) These do not deliver
product in-between
production.
(d) Does not allow
specification changes as per
user’s requirement

4. Team size Small Large
5. Documentation Low High

6. Testing Bugs are eliminated in
the development cycle
and product is double
tested after the bug
elimination

Bugs are eliminated at the
end only

7. Success
measurement

Business Value Confirmation to plan

8. Management
Style

Decentralize Autocratic

9. Time period Measured in weeks Measured in months
10. Emphasis On cowboy coding

(i.e. absence of defined
method), People
oriented

There exists a defined
method, process oriented

11. Cycles Numerous Limited
12. Return on

investment
Early Late

13. Risks Unknown risks Well understood risks

14. Architecture Designed for current
requirements

Designed for current and
foreseeable requirements

